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Abstract. Using properties of Dirichlet's iterated integral formula we show how the 
Riemann-Liauville fractional integral unifies arbitrary moment calculations for reduced 
distributions an hyperspheres. A whole class of problems of this is then reduced to readily 
identifiable integral transforms. The work is applied to quantum inference and connections 
made to random matrix theory aspects of nuclear physics and quantum chaos. 

1. Introduction 

Here we shall develop further an  integration formula from previous work [ 11 and show 
how it reduces to a special example of the Riemann-Liouville fractional integral [2-41. 
The work has ready application to any calculation of the form 

A 

where operator P will generaliy be a projector, @ is a real, complex or quaternionic 
vector of dimension d and d o 6  is the normalized invariant measure over all such 
vectors. Integrals of this type appear in random matrix theory aspects of nuclear physics 
[5-71 and quantum chaos [SI. In quantum inference [9] they play a pivotal role in 
determining the quantum limits tn knowledge of states [9]. 

In [ l ]  we found a useful formula that gave (1) explicitlr in terms of various 
antiderivatives o f f  for the special case of J, complex and P one-dimensional. In 
seeking to understand and extend this result we discovered that it is but a particular 
example of Cauchy's formula for iterated integrals [2]. Here we develop a more general 
formula for (1) that expresses the result in terms of the Riemann-Liouville fractional 
antiderivatives off :  In this way we are able to demonstrate how fractional integration 
unifies all such calculations. A secondary theme shall be the intimate connection of 
fractional integration with Dirichlet's integral. We find that problems like (1) can be 
viewed in two quite different ways. The results we then use to calculate some integrals 
of topical interest. 

The paper is organized as follows. In section 2 we review fractional integration 
and discuss its relation with Dirichlet's integral. In section 3 we use the resulting ideas 
to arrive at a very economical rederivation of the distribution of components of random 
unit vectors in  R". Thus equipped, section 4 develops the connection between these 
so-called reduced hypersphericaldisfribufions, integrals of type ( 1 )  and fractional integra. 
tion. Applications are then developed in section 5.  

0305-4470/91/061237+08$03.50 @ 1991 IOP Publishing Ltd 1237 '> 



1238 K R W Jones 

2. Riemann-Liouville fractional integration 

The Riemann-Liouville fractional integral of function f to the order p is defined by 
the expression 

where R e p  > 0 (extensions are possible). It expresses antidifferentiation to fractional 
degree. To see why, observe that, for Re U > 0, 

where we have recognized Euler's beta function, B(p, U), at an intermediate step. Now 
for the p integral one sees that the result agrees with the usual notion of antiderivative 
(with constants ignored). Furthermore, for this choice o f f  it is clear that the p 
antiderivative followed by the p' antiderivative is the p +p '  antiderivative. This 
essential consistency property ensures that normal integration is recovered should one 
choose to pass in an arbitrary manner through successive fractional orders to any 
integral order. 

2.1. Dirichlet's trick 

Clearly the consistency property under iterated fractional integration extends to any 
f analytic on a disk containing (0, U), for we may then integrate its power series term 
by term. However, one can do  better than that using Dirichlet's integral identity: 

lo" ~ o " ~ ' ; ~ ( u - w , - w 2 ) w ~ ~ ~ ~ w ~ ~ '  dw, dw, 

which we give in a form adapted from [ 101. For this to hold f need only be continous 
on (0, U). Repeated changes of variables to w; = (U - w2) - w, then w; = U - w2 on the 
left and w'= U - w on the right gives 

thereby proving the desired result 

~ # > { ~ p , { f ( w 3 ;  wu; U)= a,,+,,{f(W'); u l .  ( 5 )  

Further interesting properties of the fractional integral, such as fractional integration 
by parts, fractional differentiation and peculiar properties of the fractional chain and 
Leibniz rules are well documented in the literature [2]. 
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2.2. Historical note 

The history of this formal extension to the operations of calculus is as old as the 
subject itself (dating back to Leibniz, see [ l l ] ) ,  has had an outstanding pedigree of 
contributors, and its fair share of colourful controversies (for a detailed survey see 
[2]). In mathematical physics Riesz used the idea t o  great effect in developing the 
theory of hyperbolic partial differential equations [ 121, whilst it has enjoyed sporadic 
application in the theory of diffusion (see [2] and references therein) and, in a form 
due to Weyl [3], formed the basis for Mandelbrot and van Ness's ideas on fractional 
Brownian motion [ l l ,  131. 

For all this the topic appears to remain obscure to all but those who stumble across 
it. Fundamentally, this is because it is clear from the definition (2) that any result 
couched in fractional integral terms can always be expressed via ordinary integrals 
and f o r  derivatives. Nevertheless, the concept is extremely useful for the different 
perspective it offers. 

2.3. Dirichlet's integral as a fractional integral 

Dirichlet's integral [lo] is a powerful result ideally suited to calculations like (1). We 
shall give it in a form that reveals most closely the connection with fractional integration. 
Using (3) repeatedly one readily shows that 

J = J  . . . I  f ( u - w , -  w , ) ) w : ~ ~ '  . . .  wji"-'dw , . . .dw,  
Y 

where V is the simplex; w, 3 0, E$, w, s U, Re p, > 0 and Ipl= E;=l p!. Reading the 
right-hand side as a fractional integral we see that 

~ = r ( p , )  . . . r ( ~ L d ) ~ ~ l l l l ~ ~ ( ~ ) ;  UI. (7) 

So Dirichlet's integral and the properties of fractional integrals are closely related 
through their mutual dependence on the identity (3). Indeed we can carry out an 
entertaining direct proof of Dirichlet's integral using (3) in the form (5). Start by 
writing the multiple integral as 

1;' _ _ .  / T f ( a , , + , ) w : - ' .  _ _  w p - '  dw,. . . dw, (8) 

where the w, dependent integration limits are defined recursively by a,, , =a, - w, with 
a, = U, and it is emphasized that the integrations are to be done in decreasing order 
of j. An inductive proof of (7) is then readily constructed using the simple property 
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Thus we arrive at an appealing intuitive feel for the meaning of Dirichlet's integral. 
Note that when all pj = 1 we have a normal iterated integral of Cauchy type [2]. The 
result we derived in [I] for a special case of (1) can now be recognized as being part 
of the above family of fractional integration formulae. 

3. Reduced hyperspherical distributions 

Consider a random unit vector Ji) E Rd and an /-dimensional projector f? We shall 
seek the distribution of u=(PlPl6) .  the problem is a simple one in hyperspherical 
geometry, with physical applications in random matrix theory [5-71. An alternative 
derivation of the known result is offered upon consideration of the Dirichlet-like 
integral, 

w:d-'cS(u - w , - .  . _- w d )  dw, . . .dwd (9) 

where V now extends over all w, 3 0. Applying the methods of section 2, this readily 
reduces to 

wherelpl, p, and21p12=Zj=, p,.Toobtainthereduced hypersphericaldistribu- 
tions, let ( i l P l i ) = Z : = ,  U,. If we use a delta function representation of the measure 
dh ;  and change all d variables to w, = U:, we see that U = 1, p, =+, and so 

set f(w)- 1 to ohmin ~ ' = r ( ! / 2 ) " / r ! d / 2 ! ,  We can then pick out the sought-after 
reduced hyperspherical distribution of order I as the weight function 

thereby reproducing the standard result [S-81. Observe (1  1) has an alternative interpre- 
tation as a fractional integral if we define g ( w )  = w " ~ - ' ~ ( w ) .  

4. Integration formula 

It is now a simple matter to establish an explicit formula for (1). For a unified treatment 
of the three Hilbert spaces over R, C or H, we label the dimensionality of the base 
algebra by U = 1, 2 or 4 respectively. Then from [14] we have 

(fc(, lPl,))dAj=r(ud/2) I f ( ( , l ~ l ~ ) ) ~ ( l - ( , l , ) ) d ,  d d  (13) 
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where dJ, dd=ll;=, II;=, ?r-'/2xik and j indexes basis elements l j )  ofthe Hilbert space, 
while k indexes the units e, of the base algebra. Let el = 1, e2 = i, e, = j and e ~ = k ,  
then we can cover all three cases by writing a general Hilbert space element as 

If we now use polar coordinates to make the change of variables w, =Z;_, x&, then 
(I?) becomes 

\ . . .Iv f( w, + . . .+ wI) w;"-'. . . w;"-'S( 1 - w, -. . . -wd) dw, . . . dwd (14) 
r(u/21d 
where again V is over all wj>O. Then, using (1 1) we arrive at the general result 

Alternatively, we might write this as a fractional integral, 

where g(w)= w"'l2f(w). Observe that where u ( d -  1) /2  is integral we get a formula 
expressible in terms of normal antiderivatives, see for example [ 9 ] .  This is always so 
for complex and quaternionic Hilbert space (since U is even). To obtain a consistent 

were led to consider fractional integration via this route). In this sense, the concept 
of Riemann-Liouville fractional integral exposes an otherwise obscure unity underlying 
this class of problems. Furthermore, it helps us streamline calculations since many 
fractional integrals are tabulated [3]. 

4.1. Extension to non-projectors 

Before moving on to discuss applications we remark that i i t h e  complex case the above 
formula can be easily extended to include any operator, A, admitting an orthonormal 
spectral decomposition (for instance it may be Hermitian or unitary). Noting that Y = 2  
for complex Hilbert space we find that 

-:.+..ID f-. ---l Uilhnrt h :I rhnn nnitp nrt . .ml +- nllnxrr hnlLnrAPr ;n+nnmlc (WP y,c,u,c I", .CP, .I,,".,.. .,pacu .L .a \..*.I U".& .- ..&.",. .I"..-Y...I. ..... 6La." \,.- 

=T(d)  . . . f ( A , w , + .  . . + A d w d ) B ( l -  W I - .  . .- wd)dw,. . . dwd (17) 

where A, are the eigenvalues of b, initially assumed non-degenerate. Proceeding as in 
section 2 we define recursive limits a,,, = a,- w, with U ,  = 1 and an auxiliary set of 
variables p,+, =p,+A,w, with p , = O .  Then (17) becomes 

1 1" 
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Using the simple property 

J ; ' ~ , M W ) ;  P,+l+Aa,+Jdw, 

1 1 -~ - 
A -A, am+i{f(w); P,+ha,)+= % + , { f ( w ) ;  P, + A,'Y,} 

where A #A,, one can then derive the remarkable formula 

Note that the degenerate case can be handled via the standard trick of taking limits 
as eigenvalues approach pairwise; for a recent example see [lS]. Using this trick one 
can change variables and treat the d-dimensional quaternionic case as a doubly 
degenerate 2d-dimensional complex problem. Alternatively, Davies has shown that 
one can use (19) as a generating function for the corresponding generalization of 
Dirichlet's integral where all p; are integral [161. However, it seems that the same 
integral on real Hilbert space (p; non-integral) is far more difficult. 

5. Applications 

For nuclear physics and quantum chaos; we remark that many results concerning the 
statistical properties of the eigenvectors of random matrices become much clearer if 
one works with reduced hyperspherical distributions in the general form, 

Immediately one recognizes the beta distribution [171. Then results such as the 
asymptotic Porter-Thomas ,y2 approximation [S, '71 (for d large and I<< d )  become 
elementary consequences of the asymptotic properties of  the beta distribution. One 
also recognizes different regimes of behaviour, for if d is large and I = d  then the 
distribution becomes Gaussian with mean I/d and variance u2=2/vd([ /d)( l  - / Id) .  

Non-trivial new results are to be found when we apply these methods to neatly 
dispose of a class of integrals occurring in quantum inference. For details about this 
formalism for constraining knowledge of quantum states see [l ,  91. In particular we 
shall calculate 

S(P ,  @) = J (($I@I+)Y d f b  (21) 

W,(w'-'log w, U } =  r(') U''+'-' x [log u+Q(v)  -Q(p + U ) ]  (24) 
r ( U + p )  
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we find 

S ( P ,  = C ( d ,  I, v, P )  (26 )  

E ( P , B ) = C ( d , I ,  v , P ) x , F I ( v l / 2 + P ;  u d / 2 + P ;  a )  (28) 

H(P, @ ) = C ( d ,  1, ~ , P ) X [ Y ( ~ ~ I ~ + P ) - Y ( ~ ~ / ~ + P ) I  (27) 

where C ( d ,  l, u . P )  is the constant 

Knowing the above integrals enables us to extend the quantum limits to knowledge 
of states derived in [9], to  the cases of real and quaternionic Hilbert spaces of arbitrary 
dimension d. This we shall do  elsewhere. 

i<oie iini use of i i g j  enabies extension to the case where B is repiaced b y  
complex or quaternionic, Hermitian or unitary. The most significant of these is H(1, A) 
on complex Hilbert space. Using (19) we easily find 

( + I & )  b&I&) d& 

a result first obtained by different means in [15]. This and the corresponding quater- 
nionic result enable a significant generalization of quantum inference to embrace 
analysers constructed with elements of arbitrary POV measure; see [ I ]  for background. 

6. Conclusion 

It was our intention both to advertise fractional integration and to develop its use as 
a tool for a certain class of problems of some topical interest. We hope at least to have 
shown how knowledse of the concept reveals connections between cert.~in othc-ise 
unrelated topics. The alert reader will have observed that in no sense is the concept 
necessary for anything that we have done. Nevertheless, we rate it highly useful for 
the unity it brings to calculations like ( I ) .  Furthermore, in making the connection we 
are directed naturally to the useful resource [3], where the results for a very large class 
of integrands are tabulated. 
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